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Polymer–filler interactions
in a tire compound
reinforced with silica

Jordão Gheller Jr1, Manoela V Ellwanger1
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Abstract
Elastomers, usually, are reinforced with reinforcing filler in order to improve their
mechanical properties like tensile strength and abrasion resistance. The efficiency of this
reinforcement is correlated with different factors like filler structure, surface area, and
polymer–filler interactions. This study presents a methodology to quantify the bound
rubber attached to the reinforcing filler silica using the thermogravimetric analyzer.
Three typical rubber compounds used in tread tire were studied. In the samples tested,
the silica content was kept constant, varying only the percentage of the coupling agents.
Considering the results of the thermal analysis, physical, mechanical, and rheological
tests, the thermogravimetric analysis has proved to be a very useful technique in eval-
uating the interaction of filler and polymer.
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Introduction

When an elastomer and a reinforcing filler are mixed, strong interactions occur between

them, in such a way that, at room temperature, a good solvent of the polymer can extract

only the free rubber portion, leaving a highly swollen rubber–filler gel as the insoluble

part.1 Bound rubber (BdR) is, by definition, the rubber content in this gel.1–3

This structure of a thin layer of polymer attached to the filler, formed during the

mixing process,4 is considered one of the main factors of the degree of reinforcement and

superficial activity of the fillers, as evidenced by the close correlation between the

improvement of the properties and the amount of BdR.5
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Despite the fact that the BdR determination is a simple technique, for example,

once polymer–filler interaction involves, there are different factors, such as the physical

adsorption, chemisorption, and mechanical interaction, affecting the quality of results.6,7

These interactions are influenced by superficial properties of the filler, morphology, and

chemical structure of the polymeric molecules and its microstructure.1 Furthermore, the

BdR content has strong dependence on processing conditions like temperature and time.

Also, the parameters used in the BdR determination, like solvent and extraction tem-

perature, have a strong influence in the results. Because of all these different and

independent factors, the BdR determination is still a subject of controversy.8

Wolff,9 in his study to evaluate the correlation between the reinforcing degree and the

viscosity of the compounds, concluded that higher viscosities are obtained when the

effective volume of the filler (φeff) increases, as is presented in the equation reviewed by

Einstein, Guth, Gold, and Simha.1 An increment in the effective filler volume fraction

results in an increase of the compound viscosity.

ηcpd ¼ ηpolymer 1þ 2:5� f � φeff þ 14:1� f 2 � φ2
eff

� �
ð1Þ

Where ηcpd is the compound viscosity, ηpolymer is the viscosity of the pure polymer, and f is an

anisometric factor (or form factor), that is the ratio between the large and small axis of the

aggregate. An increase in the effective volume of the filler results in an increase in the

hydrodynamic volume by the addition of rigid particles of elastomer in the filler, with

consequent increase in the viscosity of the compound.6

Leblanc1 proposed that φeff represents the sum of the filler volumeþ BdRðφeff ¼
φfiller þ φBdRÞ.

Wolff10 studied intensively the adsorption energies and the interactions between

carbon black and silica with polar and nonpolar polymer structures. The main conclusion

from their studies was that a better reinforcement can be obtained with silica and polar

polymers like acrylonitrile butadiene rubber. For nonpolar elastomers, like the styrene

butadiene rubber (SBR) and/or polybutadiene (BR), largely used in tire compositions,

coupling agents between polymer and filler are necessary.

The role of the coupling agents is to raise the interaction between the filler particles and

rubber chains, resulting in deep modifications in the properties of the final rubber products,

like better filler reinforcement, lower softening effect in higher strain, lower filler–filler

interactions as well as better dispersions of the filler particles in the polymer matrix.1 These

singular properties are the basis to the green tire technology, started at the 90s, consisting in

the use of silica as reinforcing filler, improving the rolling resistance and fuel economy.11,12

The use of coupling agents resulted in a series of changes in the processing conditions

and production costs. Moreover, one of the main difficulties in this process is to evaluate

the efficiency of the polymer–filler interactions formed by the coupling agents,13–27

considering that for an efficient polymer–filler interaction, it is necessary to process the

compounds at different temperatures and varying the ingredients of addition sequence.

In this study, the efficiency of the addition of different quantities of bifunctional

silane bis(triethoxysilylpropyl)tetrasulfane (TESPT) in the polymer–filler interactions in

rubber formulations used in tire tread compounds with low rolling resistance, besides the

quantification of the BdR content in these compounds has been analyzed.
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The evaluation of this efficiency will be done based on the results of physical,

mechanical, rheological, dynamic mechanical tests, and the BdR content determined by

thermogravimetric analysis (TGA).

Experimental

Equipment and procedures

The rubber compounds were prepared in a HAAKE™ PolyLab™ Torque Rheometer

from Thermo Scientific (U.S.) with two wings rotors and, in another step, in an open mill

from Copé (Brazil).

The sample tests were vulcanized in a compression press, at 170�C at a time of 2 min

more than the optimum cure time determined by the rheometric curve.

Mooney viscosity was determined in an MV 2000 viscosimeter from Alpha Tech-

nologies (U.S.), according to the American Society for Testing and Materials (ASTM)

D1646. TGAs were done in a TGA Q500 from TA Instruments (New Castle, Delaware,

USA). Tensile tests were done in EMIC DL 5000 equipment (Brazil), according to

ASTM D412 Die C. Evaluation of the dynamic modulus (Payne effect) was done in a

rubber process analyzer under the following conditions: 5 Hz, 70�C, and varying the

strain from 0.3% to 100%. Compounds were evaluated after vulcanization (7.5 min at

170�C in the equipment cavity).

The heat building up (HBU) tests and the mechanical dynamic properties were

done in an MTS 831.50 machine (Material Testing Systems, Eden Prairie, Minnesota,

USA) under the following conditions: 50�C, compression force �245 N, strain ampli-

tude +20%, and 30 Hz of frequency.

Materials and formulations

Elastomers used were the copolymer SBR 1502 and BR45 from Lanxess (Germany), the

natural rubber used was Granulado Escuro Brasileiro (GEB01) from Mafer (Brazil).

Reinforcing filler used was precipitated silica Zeosil 185 Plus from Rhodia (France).

Coupling agent used was TESPT from Wenda (China). Curing system used was sulfur

based, with zinc oxide and stearic acid as activators.

The quantity of each ingredient was defined in parts per hundred of rubber (phr) as

shown in Table 1.

Processing and sample preparation

According to Leblanc,1 the polymer–filler interaction occurs in the first stages of the

mixture, resulting in a direct correlation with the rheological properties of the com-

pounds. The silanization process was divided in two steps as follows1,9:

Silanization: First, one ethoxy group from silane reacts quickly with an isolated silanol

(around 85% on silica surface) or a silanediol from silica (15%); then, there is

hydrolysis of the remaining ethoxy groups, which produce a reticulation of silane

molecules through siloxane bonding.
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Vulcanization: The tetrasulfane group (with TESPT silanated silica) is broken and

forms covalent bonds with the polymer during the rubber cross-linking.

The compounds were processed in three steps as follows:

1. Step 1: Mixture of the elastomer, filler, TESPT, and antioxidant in a closed chamber

at 110–120�C with a rotor speed of 60 r min�1 for 10 min;

2. Step 2: Silanization of the system in a closed chamber at 150–155�C with a rotor

speed of 60 r min�1 for 3 min;

3. Step 3: Addition of the vulcanization agents in the open mill at 60–80�C for 10 min.

BdR determination

BdR content is measured by extracting unbound polymer chains and organic additives from

the filled rubber compound with a good solvent at room temperature, while tightly BdR

content is measured by extracting the unbound materials and loosely bound polymers.12,28–30

A fraction of each sample was removed from the step II of processing, without the

curing system, in order to avoid the elastomer vulcanization during hot extraction.

About 1.5 g of each sample were extracted with 75 mL of toluene in a Soxhlet extraction

system for a period of 60 h, and the insoluble material was dried in an oven at 100�C for 6 h.1

Approximately 10–12 mg of this material was analyzed using a thermogravimetric

analyzer, heating the sample from room temperature to 750�C, with a heating rate of

10�C min�1, using nitrogen (N2) as inert atmosphere during the analysis, which was

performed in duplicate.

Table 1. Compositions of the four samples produced.

Ingredients

Reference 5% Silane 7% Silane 10% Silane

Quantities (phr)

SBR 1502 60.0 60.0 60.0 60.0
NR 10.0 10.0 10.0 10.0
BR45 30.0 30.0 30.0 30.0
Zinc oxide 3.00 3.00 3.00 3.00
Stearic acid 2.00 2.00 2.00 2.00
Antioxidant 1.00 1.00 1.00 1.00
Precipitated silica 40.0 40.0 40.0 40.0
Silane TESPT – 2.00 2.80 4.00
Accelerator CBS 2.50 2.50 2.50 2.50
Curing agent sulfur 1.40 1.40 1.40 1.40

Total 149.9 151.9 152.7 153.9

SBR: styrene butadiene rubber; phr: parts per hundred of rubber; BR: polybutadiene; TESPT:

bis(triethoxysilylpropyl)tetrasulfane; NR: natural rubber; CBS: N-cyclohexyl-2-benzothi-

azole-sulfenamide.
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The content of BdR was calculated in accordance with the equation described below7:

%BdR ¼ phr filler� Dextracted

residue
; ð2Þ

where Dextracted represents the weight variation of the extracted material when heated

in an inert atmosphere between 250�C and 700�C and the residue is the weight of the

residues (remaining material) at 700�C in the thermogravimetric analyzer.

Results and discussion

The TG curves obtained from the extracted material are presented in Figure 1. It is

possible to observe that, as the content of silane was increased, a higher weight loss in the

extraction productions was produced, indicating the presence of a higher amount of

polymer connected to the filler (BdR).

Based on weight loss obtained and using equation (2), the contents of BdR calculated are

shown in Table 2. The BdR contents calculated are close to the values reported in the lit-

erature.1 As noted, the silane concentration above 5% is not efficient in increasing the BdR.

In the comparative evaluation among the results of Mooney viscosity and BdR of the

four compounds analyzed (Figure 2), it is observed that, with the increase of BdR

content, the Mooney viscosity decreases. This behavior is due to the decrease of filler–

filler interactions, responsible for the greatest increase on the viscosity of the com-

pounds, with consequent increase in filler–polymer interactions.10

Analyzing the results of tensile� elongation (Figure 3), it is noted that samples with 5%
and 7% of silane showed an increase in the values of modulus 300% and tensile strength

Figure 1. TG curves of samples tested under an inert N2 atmosphere. TG: thermogravimetric;
N2: nitrogen.
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when compared with the compound without silane (reference sample) characterizing a better

polymer–filler interaction and an improvement in the degree of reinforcement of the filler.

A decrease in the tension and elongation at break occurred in the compound with 10%
of silane, possibly due to an increment in the degree of cure of this compound resulted by

the sulfur that is present in the silane composition, that was added in excess.

By the variation of elastic modulus (G0), as a function of dynamic strain (Payne

effect), it is possible to evaluate the decrease in filler–filler interactions in compounds

containing different amounts of silane (Figure 4). The influence of the addition of silane

on the dependence reduction of the elastic modulus (G0) and deformation is evident. At

higher deformations (100%), contents of TESPT 5, 7, and 10% presented proportionally

a reduced dependency on the elastic modulus and the imposed deformation.

Evaluating the HBU in the four compounds analyzed (Figure 5 and Table 3), it is

observed that contents of 5 and 7% silane resulted in similar properties; however,

Table 2. BdR content calculated according to the content of silane
added to the compound.

% of silane TESTP % BdR calculated

0 19.5
5 31.2
7 31.9
10 31.5

BdR: bound rubber; TESPT: bis(triethoxysilylpropyl)tetrasulfane.

Figure 2. Results from BdR content and Mooney viscosity as a function of the silane added in the
compounds. BdR: bound rubber.
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contents of 10% silane resulted in a compound with lower HBU and lower value of tan d
(Table 3).

As shown in Table 3, as the coupling agent (TESPT) was added, the values of elastic

modulus increased and the viscous modulus decreased. This behavior can be easily

correlated with the interactions formed. As the filler–filler interactions increase (refer-

ence sample), it is possible to observe an increment in the viscous modulus or loss

modulus (K 00). In contrast, as the filler–polymer interactions increase (sample with 10%
silane), it is possible to observe an increment in the elastic modulus or storage modulus

and decrease in the loss modulus. This behavior leads to a decrease in tan d value,

resulting in compounds with lower HBU as discussed by Wang.9

Conclusions

Evaluating the results obtained in the Mooney viscosity test, as a function of the

reduction on filler–filler interaction, a decrease in the viscosity in the compounds with

silane TESPT was observed.

On the results of BdR, obtained by the TG curves, there was a good correlation of this

technique and the rheological results of Mooney viscosity, where the amount of 5%
silane TESPT calculated using the quantity of silica as reference has been proved ade-

quate in obtaining polymer–filler interactions

From the evaluation of the curves tension� elongation, it is noted that the levels of

TESPT higher than 7% raised stiffness (tensile strength at 300% of elongation) and

lowered the tensile properties and elongation at break of the compounds.

In the HBU analysis, similar results for the samples with 5% and 7% of silane was

observed, although, 10% silane resulted in a lower tan d and HBU value.

Figure 3. Stress � strain curves for the tire compounds with different silane contents.
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Figure 4. Evaluation of the variation of elastic modulus G0 in function of strain in compounds with
different silane contents.

Figure 5. Temperature � time under dynamic compression – HBU (frequency 30 Hz, amplitude
of deformation +20%, average load�245 N, and initial temperature 50�C). HBU: heat building up.
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Correlating the BdR and HBU results was possible to observe that silane levels above

5% didn’t result in a higher amount of BdR; however, analyzing the results of HBU and

tan d, a greater influence of silane content above 5% was observed, especially in the

compound containing 10% silane. This behavior can be explained by a possible increase

in the efficiency of the cure, which influences the storage and loss modulus. We con-

sidered that the cure agent (sulfur) is present in the structure of silane and may not have

been fully utilized forming the polymer–filler interactions.
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